INHIBITORY EFFECTS OF TWO POTASSIUM IONOPHORES ON OUABAIN-RESISTANT POTASSIUM FLUXES IN RETICULOCYTE CELL MEMBRANE

Rivka PANET and Henri ATLAN

Department of Medical Biophysics, Hadassah University Hospital, Jerusalem, Israel

Received 2 May 1979

1. Introduction

Valinomycin is a well-known cyclic depsipeptide antibiotic that acts by greatly increasing the permeability of various biological membranes, specifically to K⁺ [1-4]. A second compound which has the same kind of specificity for K⁺ is dicyclohexyl-18-crown-6 (DC) which belongs to a family of synthetic ionophores [5]. Valinomycin was shown to increase K efflux out of red cells at as low a concentration as 10⁻⁷ M [3]. In contradiction to these results on mature red cells, no effect of low valinomycin on K* permeability of the reticulocyte membrane was found [6]. However, they did not differentiate between passive and active influx, measuring only active influx assuming that it reflected K⁺ efflux, through K⁺:K⁺ exchange. We developed a sensitive assay for measuring K⁺ passive and active fluxes through the red cell membrane and were able to find unexpected inhibitory effects of two K⁺ ionophores on the ouabain-resistant fluxes of K+ through the reticulocyte cell membrane.

2. Materials and methods

⁴²K⁺ was obtained from Israel Atomic Energy Commission of the Soreq Nuclear Research Centre, and ⁸⁶Rb⁺ from New England Nuclear. Valinomycin was purchased from Sigma and dicyclohexyl-18crown-6 was a gift from Eli Lilly. Reticulocytes were prepared according to [7], washed twice with 5 vol. cold saline and suspended in Na⁺-Ringer solution without Ca²⁺.

2.1. 42 K + efflux

2.1.1. Loading the cells with 42K+

⁴²K⁺ (1 mC) and KCl (10 mM) was added to 10 ml cell suspension (10%) then incubated at 37°C for 2 h under continuous gentle shaking. At the end of the incubation period the cells were cooled, washed 4 times with cold saline, finally washed with 155 mM NaCl, 5 mM KCl, 10 mM glucose (solution A) and suspended in it.

2.1.2. 42K+ efflux

The reaction was started by adding 50 μ l ⁴²K⁺ loaded cells to 2.5 ml solution A containing 0.05 mg ouabain/ml and incubating it at 37°C. At intervals, samples were centrifuged at 4°C for 3 min at 3000 rev./min. The ⁴²K⁺ efflux was measured by counting the radioactivity in the supernatants. The pellets were washed 3 times with 6 ml cold saline and hemolyzed in 1.0 ml water. The specific activity of ⁴²K⁺ was determined by counting radioactivity in the washed cell pellets and measuring total K⁺ by Perkin Elmer Atomic absorbance spectrophotometer.

$2.2.^{42}K^{+}$ influx

The cells were treated as in the efflux assay with the exception that the 2 h incubation at 37° C was carried out without the radioactive K⁺. Each system contained 155 mM NaCl, 5 mM KCl, 2 μ Ci 42 K⁺, 10 mM glucose and 0.05 mg/ml ouabain in 2.5 ml final vol. The reaction began by 50 μ l cells, incubation was carried out at 37° C. At intervals, 0.5 ml samples were transferred to 4.5 ml cold saline and centrifuged at 4° C. The pellets were washed 3 times

with cold saline, hemolyzed in 1.0 ml water and counted. Specific activity of ⁴²K⁺ was determined by Perkin Elmer atomic absorbance spectrophotometer.

2.3. $^{86}Rb^+$ influx (as a tracer for K^+)

Each system contained: 310 μ mol NaCl, 10 μ mol RbCl 2 μ Ci 86 Rb $^+$, 20 μ mol glucose, 0.1 mg ouabain and 80 μ l cells in 2 ml final vol. The reaction began with the addition of cells, incubation was carried out at 37°C; at intervals 0.5 ml samples were cooled, washed and counted as described in K $^+$ influx assay.

3. Results

Table 1 compares the K⁺ fluxes in rabbit erythrocyte with those of the reticulocytes. As can be seen the ouabain-sensitive K⁺ influx in reticulocytes is 7-8-times higher than the ouabain-sensitive K⁺ influx in the red cells, indicating a higher activity of the Na⁺-K⁺ pump in the reticulocytes. Ouabain, known as a specific inhibitor of the Na⁺-K⁺ ATPase blocks 80-90% of the influx whereas the efflux is not inhibited (see table 1). Therefore, the K⁺ efflux or K⁺ influx in the presence of ouabain is mostly a function of K+ passive permeability of the cell membrane, whereas K⁺ influx without ouabain is mostly due to the activity of the Na⁺-K⁺ pump. As shown in table 1 the K⁺ efflux and ouabain-resistant K⁺ influx across reticulocyte membrane is much higher than these K+ fluxes across the red cell membrane. This difference by itself indicates the existence of a mechanism for K⁺ transport different in reticulocyte from that in the mature red cell.

Figure 1 compared the effect of valinomycin on K^+ efflux out of rabbit erythrocytes with its effect on

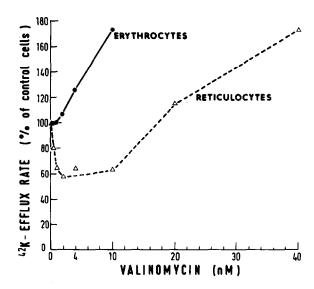


Fig. 1. The effect of valinomycin on K^* efflux from rabbit erythrocytes and reticulocytes. Valinomycin was added in ethanolic solution and the same amount of ethanol was added to the control. K^* efflux conditions as described in section 2.1.

K⁺ efflux out of reticulocytes. To our surprise we found two antagonistic effects on K⁺ passive efflux out of the reticulocytes:

- (1) At valinomycin < 10 nM, it inhibits K^{+} efflux.
- (2) At valinomycin > 20 nM, it increased K⁺ efflux as expected.

This unexpected inhibitory effect of valinomycin was found only in reticulocytes and not in mature erythrocytes. In erythrocytes only the expected stimulation of the K⁺ efflux was observed even with the low concentrations of valinomycin. By adding DC to reticulocytes it never enhanced K⁺ efflux out of the reticulocytes (fig.2). Increasing DC concentra-

Table 1

K*:K* exchange in rabbit erythrocytes and reticulocytes

Addition	Flux rate (mmol/l cell/h)			
	Red cells		Reticulocytes	
	Influx	Efflux	Influx	Efflux
_	4.2	6.6	30.0	25.2
Ouabain (0.05 mg/ml)	0.4	7.2	7.2	31.8

The K⁺ efflux and K⁺ influx conditions as described in section 2

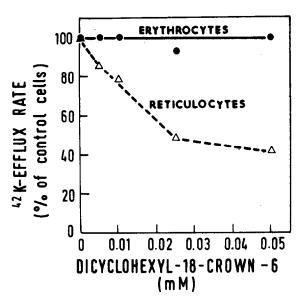


Fig. 2. The effect of DC on K^* efflux, from rabbit erythrocytes and reticulocytes. K^* efflux conditions as described in section 2.1.

tions produced inhibition of the K⁺ efflux out of reticulocytes, as do low concentrations of valinomycin. The inhibitory effect of the two K⁺ ionophores (low concentrations of valinomycin and DC tested up to 1 mM) on K⁺ efflux were found only in the reticulocytes and not in the erythrocytes. It was shown [4] that addition of H⁺ conductors greatly increased valinomycin-promoted K⁺ efflux by facilitating K⁺ exchange with H⁺ in erythrocytes. To test whether the different effects of the two K⁺ ionophores on reticulocytes and erythrocytes K⁺ efflux is not due to different permeability of their

membrane to H^+ , we compared the effect of H^+ conductor carbonylcyanide m-chlorophenylhydrazon (CCCP) in the two cells. Table 2 shows that the addition of 1.5 nM valinomycin induced 40% inhibition of Rb^+ influx in the reticulocytes and only a small inhibition in erythrocytes. By adding valinomycin in the presence of CCCP there is 6–7-times increase in ouabain-resistant Rb^+ influx in erythrocyte (in agreement with [4]) and no stimulation in reticulocyte and even to some degree of additional inhibition (table 2). This experiment indicates that the valinomycin-induced inhibition of K^+ fluxes through the reticulocyte membrane is not due to limited H^+ permeability.

4. Discussion

We showed here that ouabain-resistant K⁺ fluxes are higher in the reticulocyte membrane than in the erythrocyte membrane. These high ouabain-resistant K⁺ fluxes in the reticulocyte are reduced by adding two K⁺ ionophores, valinomycin at low concentrations and DC. This unexpected inhibitory effect of the two ionophores on reticulocytes was proven not to be a result of limited H⁺ permeability. It could be explained by a competition with a natural K⁺ carrier in the reticulocyte membrane, by assuming that the affinities (or app. $K_{\rm m}$) of valinomycin and DC are higher than the affinity of the K⁺ natural carrier to sites for K⁺ transport, but the diffusion coefficients of the complexes and/or their dissociation rate constants are lower. The inhibitory effect of CCCP by itself on Rb⁺ influx (table 2) could also be a result of

Table 2

The effect of CCCP and valinomycin on ouabain-resistant Rb⁺ influx in rabbit reticulocytes and erythrocytes

Addition	Ouabain-resis Rb ⁺ influx (r	stant nmol/1 cell/h)
	Red cells	Reticulocyte
	0.32	3.55
1.5 nM valinomycin	0.35	1.92
10 µM CCCP	0.25	1.04
1.5 nM valinomycin + 10 µM CCCP	1.95	1.26

Rb⁺ influx as described in section 2.3

competition on sites with the K^{+} carrier. Similar competition between valinomycin and various lipophilic anions for absorption sites at the membrane interface was reported by several groups [8,9]. It was demonstrated that adding lipophilic anions to bilayer membranes can block K^{+} conductance induced by valinomycin. We have now evidence for the existence of a carrier-mediated ouabain-resistant transport of K^{+} , specifically inhibited by furosemide and ethacrynic acid [10] in reticulocyte cell membrane. This supports the above theory on the mechanism of valinomycin inhibition on K^{+} efflux. In addition, erythrocytes seem to have lost this carrier in the process of maturation [10].

This can explain both the observed low K⁺ permeability of the red cell compared to the reticulocyte membrane under similar normal conditions (table 1), and the lack of inhibitory effect of valinomycin and DC on K⁺ fluxes in erythrocytes. High K⁺ active transport was found in sheep reticulocytes compared to mature red cells [11]. Similarly we have also shown that rabbit reticulocyte membrane has higher K⁺ active transport than erythrocyte (table 1).

It seems that the decrease in K⁺ active transport

from reticulocytes to erythrocyte follows a decrease in passive K^+ permeability, itself a result of elimination or inactivation of a natural K^+ carrier in the cell membrane during the process of maturation.

References

- [1] Harold, F. M. (1970) Adv. Microbiol. Physiol. 4, 45-104.
- [2] Harold, F. M., Atlendorf, K. H. and Hitara, H. (1974) Ann. NY Acad. Sci. 235, 149-160.
- [3] Tosteson, D. C., Cook, P., Andreoli, T. E. and Tieffenberg, M. (1967) J. Gen. Physiol. 50, 2513-2525.
- [4] Henderson, P. J. F., McGivan, J. D. and Chappell, J. B. (1969) Biochem. J. 111, 521-538.
- [5] Lardy, H. (1968) Fed. Proc. FASEB 27, 1278-1282.
- [6] Breitbart, H., Atlan, H., Eltes, F. and Herzberg, M. (1975) Mol. Biol. Rep. 2, 167-173.
- [7] Freudenberg, H. and Mager, J. (1971) Biochim. Biophys. Acta 232, 537-555.
- [8] Kuo, K. H., Fukoto, T. R., Miller, T. A. and Bruner, L. J. (1976) Biophys. J. 16, 143-150.
- [9] Ginsburg, H., Tosteson, M. T. and Tosteson, D. C. (1978) J. Mem. Biol. 42, 153-168.
- [10] Panet, R. and Atlan, H. (1979) Isr. J. Med. Sci. in press.
- [11] Dunham, P. B. and Blostein, R. (1976) Biochim. Biophys. Acta 455, 749-758.